Decoding Quantum Computing

Simon Watson demystifies the complex world of quantum computing Quantum computers are regularly heralded as the future of computing, harnessing the power of atoms and elementary particles to perform calculations that today’s computers could only dream of. Quite how this remarkable feat is achieved is either complicated with jargon such as ‘qubits’, ‘superposition’ and ‘entanglement’ with no further description, or dismissed as too complicated for a layman. This article aims to explain how

In Search of Quantum Gravity

In Search of Quantum Gravity Gianamar Giovannetti-Singh explores the holographic universe Modern fundamental physics consists of two major pillars; general relativity, describing the interactions between matter and spacetime at the largest scales imaginable, and quantum mechanics, the physics governing the behaviour of subatomic particles. Despite each respective theory being tested to an extraordinary degree of accuracy, they are fundamentally incompatible with each other – general relativity predicts continuous spacetime as